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Abstract
This paper describes a comparison of search methods applied to the same problem of scheduling activities for

NASA’s Deep Space Network (DSN). The DSN consists of large (34- and 70-meter) radio antennas at three sites
around the world, and provides communications and navigation support for dozens of space missions. The DSN is
oversubscribed – more time is requested than can be accommodated – and it is an ongoing challenge to efficiently
schedule the available resources while also balancing the satisfaction of requests from the disparate set of users. As
part of a study of state-of-the-art solution techniques for oversubscribed scheduling, a standard set of problems was
defined, and solutions were attempted with several classes of algorithms developed by different teams. These included
variants of Quantum Annealing (QA), Mixed-Integer Linear Programming (MILP), and Constraint Satisfaction Problem
(CSP) based heuristic search (CSP-HS). The results of this comparison show that the heuristic search method CSP-HS
significantly outperforms the other methods in the study in terms of solution quality and runtime performance, when
objectives are to maximize the “fairness” of the resulting schedule (e.g. minimize starving some users at the expense of
others) while simultaneously clearing all constraint violations and fitting as much as possible into the schedule. CSP-HS
shows progressively better performance on more oversubscribed problems. The set of benchmark problems is made
openly available for other groups to try.
Keywords: Deep Space Network; scheduling; heuristic search

1. Introduction
NASA’s Deep Space Network (DSN) consists of a set of large (34-meter and 70-meter) antennas located at three sites

that are roughly equally spaced around the world: Goldstone, California USA; Madrid, Spain; and Canberra, Australia

Fig. 1 The Deep Space Network station locations (upper left), approximate fields of view showing how a spacecraft is
nearly always visible from at least one station (lower left) [1], and the newest DSN antenna, DSS-56, which entered
service in January 2021 in Madrid, Spain (right).
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(Figure 1; for more information about DSN antennas, see, e.g. [2]). The DSN provides the sole communications lifeline
for dozens of interplanetary spacecraft. It also provides navigation services and scientific observations in the fields of
radio astronomy and planetary radar. It is the largest and most sensitive telecommunications network in the world. At the
present time, the DSN supports about 40 users with 14 antennas, with the number of users roughly expected to double in
the next 5 years. The DSN is operated for NASA by the Jet Propulsion Laboratory in Pasadena, California.

An an international asset in high demand, the scheduling of the DSN is heavily subscribed. The scheduling process
for the DSN [3] is conducted on a rolling weekly basis, months ahead of execution. The first step in that process is to
integrate and deconflict the many requests for services that users submit ahead of a common deadline. That process is
one of the most labor-intensive and time-consuming aspects of DSN scheduling, and is the focus of the study reported
here. It generally takes days of work to manually deconflict the schedule to a level where teams of schedulers spend
another week or so negotiating final changes to the point where a mutually-concurred baseline schedule can be published.
Missions generally require the schedule to be well-defined and stable weeks to months ahead of time to enable their own
processes for planning and onboard sequencing of activities. These need to be consistent with opportunities to download
data and to receive commands from the ground, often with long light travel time delays.

As part of an assessment of technologies that could potentially be used to improve this part of the process, a study
was initiated in 2018 to assess new approaches to the solution of the same oversubscribed DSN scheduling problem.
These included:

• Quantum Annealing (QA) inspired quadratic unconstrained binary optimization (QUBO) formulation [4], solved
with the D-Wave Leap Hybrid Solver Service (HSS)

• Δ-MILP [5, 6], a Mixed-Integer Linear Programming variant
• CSP-HS, a Constraint Satisfaction Problem (CSP) based heuristic search technique, CSP-HS [7–9] that was

previously under development for DSN scheduling for an investigation of priorities and user preferences, and was
adapted to ingest the common problem format, and to implement the same scheduling objectives as used in the
other methods.

In addition, a Reinforcement Learning (RL) [10, 11] approach was also explored, but unfortunately did not yield
final results during the time period of the study.

In the following we first describe the scheduling problem in more detail, including the relevant constraints and
objectives that play a key role. We then describe the CSP-HS heuristic search algorithm. This is followed by a detailed
comparison of the results from three of the methods that have solved at least a subset of the problems. The complete
source of the problems from 2018 are publicly available [11]. We conclude with a summary of current status and
ongoing and future work.

2. DSN Scheduling
Scheduling a week of DSN activity requires the integration and deconfliction of requests from all DSN users.

Requests are formulated in terms of requested tracking time, along with constraints such as temporal limits, specific sets
of antennas that can support the requested services, min and max separation limits, etc.: for a full list see [3]. In addition
to request-specific factors, scheduling depends on the line-of-sight visibility of the spacecraft by the antenna, and on
whether the antenna is available (i.e. not down for maintenance or other upgrades). Other constraints determine whether
missions that are simultaneously in view can actually be scheduled in parallel. While it is necessary to consider all of
these factors in constructing and checking an operational schedule, they overly complicate an algorithm test scenario.
As a result, a characteristic but somewhat simplified problem set was constructed based on requirements submitted by
users as part of their long-range loading forecast.

2.1. Scheduling Problem Characteristics
The major features of the requests in this set are:

• a valid time range interval during which any generated tracks must be contained
• a tracking time duration
• a set of antennas that can accommodate the necessary services
• for longer tracks, a range of valid durations, and the option to split a track into segments with a specified minimum

duration
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• service-dependent setup time and teardown time that has to be included on all tracks (and on any split segments)
• for certain tracks, the option to schedule on either a single 70-meter antenna, or on a simultaneous array of two

(or more) 34-meter antennas
• for navigation purposes, some tracks must be scheduled on two different antennas at once, and at different

complexes

In addition to request specifics, there are general constraints based on the spacecraft involved:

• tracking time must only be scheduled on an antenna when a spacecraft is in view of that particular antenna, and
when the antenna is available (not in maintenance or other downtime); however, pre-track setup and post-track
teardown time can be scheduled out of view

• scheduled activities on one antenna must not overlap with tracking the same spacecraft on another antenna (except
for above-mentioned arrays or special navigation tracking)

• different spacecraft cannot generally be simultaneously scheduled in overlap on the same antenna – such a
configuration is called a facility conflict (in reality, compatible spacecraft in the same beam can be scheduled
simultaneously using a capability called Multiple Spacecraft per Antenna (MSPA), but that was not included in
this study dataset)

A typical week includes hundreds of requests covering a 7-day interval that must be fit into the week without
violating any of the constraints listed above. Such a schedule is called feasible. A total of 6 sample problems were
defined for the investigations reported here, one in 2016 (week 44) and 5 in 2018 (every 10th week from 10 to 50). For a
formal representation of the problem, refer to [6], [11], or [4]. The 2018 weeks are publicly available as the SatNet
benchmark dataset [11].

2.2. Oversubscription
The DSN is routinely oversubscribed by a variable amount [12, 13], depending on the mix of missions and their

planned activities. For example, when a mission reaches its destination science target, such as a planet or asteroid, it
can go from minimal DSN usage to nearly continuous coverage for some period, sometimes months or years. Other
missions act as orbiting relay stations for ground-based rovers. When oversubscription reaches a level of as little as
10% it is equivalent to having one additional antenna’s worth of demand to remove before a feasible schedule can be
developed and published. Typical oversubscription levels range up to about 40%, with even higher spikes. Note that
oversubscription is not just a function of total time in the week, but also of the geometry of when missions are visible:
for spacecraft that are in the same part of the sky, their total demand can still overwhelm available resources during
certain times of the day when they are all visible.

2.3. Scheduling Objectives
Natural objectives for the DSN scheduling problem might seem to be to maximize the total number of requests or

total time scheduled, or to maximize antenna usage. However, there are severe drawbacks to using these as objectives for
this problem: several dozen individual missions or science users submit their requests, which are widely varying in both
total time and individual request duration, and thus with a range of difficulty in fitting into the schedule. A solution that
fills the schedule by satisfying requests from one mission at the expense of another would be rejected by DSN users. In
extreme cases, missions could be entirely dropped from the schedule, with others having incrementally more of their
requests satisfied – an unacceptable scenario.

This leads to the definition of objectives that are based on how well scheduling requests are met on a per-mission
basis. Two cost (minimization) objectives are therefore defined, based on a measure of how unsatisfied each mission
could be with the extent to which their requests are met in the final schedule (with an assumption of uniform preferences
among each mission’s requests, e.g. [14]):

The overall RMS unsatisfied time fraction is defined as:

𝑈𝑟𝑚𝑠 =

√√
1
𝑁

∑︁
𝑖=1...𝑁

(
𝑇𝑅𝑖 − 𝑇𝑆𝑖
𝑇𝑅𝑖

)2
(1)

where 𝑖 ranges over missions 1 . . . 𝑁 , and 𝑇𝑅𝑖 and 𝑇𝑆𝑖 are the tracking time requested and scheduled, respectively, for
mission 𝑖.
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While this will reflect an overall measure of unsatisfied requests, it does not distinguish the situation where one
mission is “pushed out” of the schedule altogether (𝑇𝑆𝑖 = 0), an unacceptable situation. For this purpose, a better metric
is:

𝑈𝑚𝑎𝑥 = max
𝑖∈{1...𝑁 }

(
𝑇𝑅𝑖 − 𝑇𝑆𝑖
𝑇𝑅𝑖

)
(2)

which indicates the worst case (max) unsatisfaction of any individual mission. Here, a value of 1.0 means no requested
time for that mission was included in the schedule. We can compare two schedules based on their values of𝑈𝑟𝑚𝑠 and
𝑈𝑚𝑎𝑥 . Intuitively,𝑈𝑟𝑚𝑠 can be thought of as “spread the pain”, and𝑈𝑚𝑎𝑥 as “no user left out”.

3. CSP-HS: CSP-based Heuristic Scheduling for the DSN
The heuristic search algorithm CSP-HS described in this work is based on a stochastic multi-start hill-climbing

approach, implemented in three computational phases (see Figure 2a):

1) Initial assignment: perform a greedy initial assignment of all requests to some valid time and resource for that
request, avoiding but allowing conflicts

2) Min-conflict hill climbing: use a min-conflicts heuristic to repair the schedule and reduce conflicts, leaving all
requests assigned [15]

3) Deconflict and repair: remove conflicting activities and (selectively) add back others that may now have feasible
places

In this approach, each phase can make use of different heuristics, described below, and we can assess the combinations
that provide the most promising results and then evaluate them on larger data sets.

For an example run, Figure 2a shows the evolution of some quantities of interest during the three computational
phases. These include:

• conf: the number of requests in conflict, i.e. violating any hard problem constraint
• RMS_unsat: the changing value of RMS user unsatisfaction𝑈𝑟𝑚𝑠 (Eqn. 1)
• max_user_unsat: the changing value of the max user unsatisfaction𝑈𝑚𝑎𝑥 (Eqn. 2)
• unasgn: number of unassigned variables, i.e. the number of requests without track assignments

(a) Illustration of the 3 phases of the CSP-HS algorithm, showing CSP runtime values
as a function of step count. In the first phase, all variables are assigned, and when
no conflict-free values are available, the conflict count grows. In the second phase,
the min-conflicts heuristic is used to reduce conflicts by re-assigning variables with
conflicted values. In the third and final phase, variables are unassigned until there are
no conflicts remaining.

(b) A comparison of four candidate heuristic pairs (A,B)
for phases 1 and 3, as assessed by the objective 𝑈𝑚𝑎𝑥 .
For this metric, the max unsat (MUS+MUS) combination
performs best by far.

Fig. 2 CSP-HS: (a) three runtime phases illustrated, and (b) performance for example heuristic choices
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• track%: percentage of tracks scheduled
• unsched_time%: percentage of time requested that is not scheduled
• activity%: percentage of activities scheduled

The underlying representation of the scheduling problem is based on discretizing the feasible times throughout the
week of interest, initially using a time quantum of 15 minutes (see discussion below). Variables correspond to requests,
while the decision value 𝑥 𝑗 for each request 𝑗 encapsulates simultaneously a choice for start time, duration, and antenna:
(𝑡 𝑗 , 𝑑 𝑗 , 𝐴 𝑗 ). For requests with splittable tracks, this is extended to include when to split, and then each split segment
start time, duration, and antenna. For multiple antenna requests, it also includes the set of antennas (the start time and
duration must be the same). Any choices that can be excluded (not in view, antenna not available, etc.) are omitted from
the model.

During all three phases it is necessary to keep a tally of how many variables and their values are placed in conflict
due to other variable assignments. For example, scheduling a simple request at a specific time would place any other
overlapping requests on the same antenna in conflict, and so would increment the conflict count on all those value
choices. Conflicts are calculated on the fly and then cached, so it is fast to undo/redo any trial assignment.

Both the initial assignment (1) and the deconfliction phase (3) are driven by heuristics that are applied to the
then current state of the model. Several heuristics were explored to determine which performed best in the context
of objectives related to fairness, focusing on𝑈𝑚𝑎𝑥 (see Figure 2). Some of the variable (request) selection heuristics
assessed are listed below; value selection is random from the set of min-conflict values:

• MUS: most unsatisfied user – the request that can contribute most to improving𝑈𝑚𝑎𝑥

• RMSUS: the request that can contribute most to improving𝑈𝑟𝑚𝑠

• MCF: most constrained first – the request with the fewest min-conflict value choices
• MAXCONF: the request with an assignment that has largest number of conflicts
• RAND: a random request

4. Results
CSP-HS was run on each of the 6 test problems (best of 100 runs), with the results tabulated in Figure 3 and plotted

in Figure 4. All of the problems were also solved by Δ-MILP [6], and two of them were solved by QUBO+Leap [4]. No
results were reported by the RL investigation.

The solution metrics reported in Figure 3 are:

• Hours satisfied: total hours scheduled as compared with total requested for the week

2016-2018 Problems

2016 
wk44

2018 
wk10

2018 
wk20

2018 
wk30

2018 
wk40

2018 
wk50

Metric ΔMILP CSP-
HS

QUBO
+Leap

ΔMILP CSP-
HS

ΔMILP CSP-
HS

ΔMILP CSP-
HS

ΔMILP CSP-
HS

QUBO
+Leap

ΔMILP CSP-
HS

Hours satisfied 901 of 
1418

950 976 822 of 
1192

860 1059 
of 

1406

1034 983 of 
1464

998 949 of 
1737

984 1059 816 of 
1292

838

Overall satisfied time fraction (%) 63.5 67.0 68.8 69.0 72.2 75.3 73.6 67.1 68.1 54.6 56.6 61.0 63.1 64.9

# satisfied requests 208 of 
284

231 245 203 of 
257

224 249 of 
294

261 231 of 
293

248 223 of 
333

250 269 197 of 
275

224

average satisfied request fraction (%) 73.2 81.3 86.3 79.0 87.2 84.7 88.8 78.8 84.6 67.0 75.1 80.9 71.6 81.5

Average satisfied fraction (%) 69.9 76.8 82.8 81.5 84.5 88.8 84.9 81.4 79.0 70.8 72.7 80.3 73.8 77.8

RMS Unsat (%) 35.4 30.2 31.5 26.5 23.1 21.5 21.8 29.4 27.7 40.5 35.6 33.5 34.9 30.1

Max Unsat User (%) 54.2 49.2 89.2 47.9 44.2 64.1 50.3 64.3 52.9 100 60.1 94.6 60.0 54.4

Runtime (hours) ~24 ~1* ~2.5

Fig. 3 Summary of tabulated results comparing different approaches. Better values of the schedule metrics are indicated
in bold font, and for fairness metrics𝑈𝑚𝑎𝑥 and𝑈𝑟𝑚𝑠, shaded in green as well. Runtime for CSP-HS is based on 100
(serial) runs, as described in the text.
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Fig. 4 Summary of results for the 6 test weeks, plotted vs two key minimization objectives,𝑈𝑚𝑎𝑥 and𝑈𝑟𝑚𝑠 – better
results are to the lower left. Results are labeled by the method used (see table). CSP-HS is in all cases better in𝑈𝑚𝑎𝑥 ; in
two problems, 2018w20 and w40, other methods perform slightly better in𝑈𝑟𝑚𝑠 , but only by starving one or more users
to improve the overall RMS (at the expense of worse values of𝑈𝑚𝑎𝑥 .)
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• Overall satisfied time fraction (%): number of hours satisfied as a fraction of the total requested
• # satisfied requests: total number of requests successfully scheduled as compared with total for the week
• Average satisfied request fraction (%): number of requests satisfied as a fraction of the total
• Average satisfied fraction (%): the average over all users 𝑖 of the satisfied request fraction, 𝑇𝑆𝑖/𝑇𝑅𝑖
• RMS user unsatisfaction𝑈𝑟𝑚𝑠 (%) - Equation 1
• Max user unsatisfaction𝑈𝑚𝑎𝑥 (%) - Equation 2
• Runtime (hours): approximate total runtime for 2016wk44 (other problems are similar and not reported)

4.1. Solution Quality
In Table 3, better values are bolded and the best values of the fairness metrics𝑈𝑟𝑚𝑠 and𝑈𝑚𝑎𝑥 are also highlighted

in green. One of the results evident from the table is that it is common for methods to “pack” the schedule with smaller
and easier-to-schedule activities, with the tradeoff being that some missions have their time reduced, in order to fit in
more activities for others. This highlights the difficulty of accommodating the fairness metrics that ensure no mission is
starved. In contrast, CSP-HS does a much better job on𝑈𝑚𝑎𝑥 while still populating the schedule to a very high level. In
only two problems did other methods do slightly better in𝑈𝑟𝑚𝑠 and, in both cases, the max user unsatisfaction metric
𝑈𝑚𝑎𝑥 was much worse (by 14 percentage points or more).

Of the 6 test problems, 2018wk40 is the most oversubscribed: it has the largest number of requests and of requested
tracking hours, and the smallest fraction of requested time scheduled. This is a consequence of the activities planned
around that time: one mission approaching Mars for landing, and two others approaching their asteroid targets, with all
of these events requiring much higher tracking and communications coverage than at other times. For this week, both
Δ-MILP and QUBO-Leap had𝑈𝑚𝑎𝑥 values >95%, while CSP-HS came in at a much lower level of 60%. At this level
of oversubscription, it is essential to balance the mission set so that in spite of very heavy demand, no users are dropped
out of the schedule. In this particular problem, what is observed in the solutions generated by Δ-MILP and QUBO-Leap
is that several large users are massively under requirement (5% or less), in order to build up the scheduled time of the
others. Such schedules are completely unacceptable in real DSN operations.

4.2. Runtime Performance and Scalability
As a multi-start stochastic algorithm with a hill-climbing phase, CSP-HS is run for a specified number of iterations.

Empirically, phase (2) is run for 10 × 𝐾 iterations where 𝐾 is the total number of requests. Experiments with other
values have been run, and it has generally been found that improvements plateau after this point. As with the number of
iterations, the total number of runs is also specified and has been set to 100 for this experiment. Note that these runs are
completely independent and so could be trivially parallelized, but the timing reported here is the serial runtime as a
worst case.

Typical CSP-HS runtimes (100 runs, 10 × 𝐾 min-conflicts iterations, on an Intel Core i9 MacBook Pro) are close to
1 hour (serialized, 35 seconds/iteration). QUBO-Leap runs in roughly 2.5 hours, which is split between QUBO problem
generation and running the solver. Both CSP-HS and QUBO-Leap could benefit from parallelization. Δ-MILP runs over
a time range from 7.5 to 22.5 hours, with the most oversubscribed schedules taking longest. While the actual step in the
DSN scheduling process in which this algorithm would run allows for such long runtimes, it is clearly advantageous to
run quickly to allow for iterations. As usual, there is a caveat on comparing runtimes across the different methods: each
method ran in development/test environments appropriate to their methodologies, and these environments do not reflect
optimizations that would eventually be expected.

All method results reported in Figure 3 were run with 15-minute time granularity. In actuality, the DSN runs on
schedules with 5-minute granularity, and so additional tests of CSP-HS were run with this setting. End-to-end wall clock
time per run increased from 35 seconds (15-minute granularity) to 291 seconds (5-minute granularity), a factor of 8.3×,
corresponding to 𝑂 (𝑇2) in the number of time points 𝑇 . With full parallelization, CSP-HS solutions could be generated
in about 5 minutes. No other methods reported solutions with 5-minute granularity.

5. Conclusions and Next Steps
We have described a heuristic search framework CSP-HS for solving heavily oversubscribed scheduling problems

such as those found in NASA’s Deep Space Network, where an important part of any solution is the satisfaction of
“fairness” metrics for the allocation of time. The CSP-HS framework lends itself to “pluggable” heuristics, depending on
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the key objectives that apply. For the DSN, solutions found for a sample problem set are both higher quality and found
more quickly than all reporting comparison methods, including a Quantum Annealing (QA) QUBO-based method using
a hybrid quantum solver [4] and the Δ-MILP approach based on a Mixed-Integer Linear Programming formulation [6].

Fairness often plays a major role in problems like this (e.g. [16]), in that it is essential not to starve one user to
accommodate others. In this particular problem, fairness is reflected by the allocation of time in proportion to that
requested, due to an upstream process that validates requested levels as acceptable. Other aspects of the problem could
contribute – for example, there could be a threshold by mission for minimum acceptable allocations. The approach
presented here can contribute to solution options in these kinds of cases, in that heuristics can be incorporated directly
into the CSP-HS runtime phases.

While the sample problems discussed above capture the driving characteristics of the initial phases of DSN
scheduling, there are some significant elements of the full-scale DSN scheduling problem that are not included. Chief
among these are the following:

• time separation between tracks: for many missions with regular tracking intervals, tracks must be separated by
some minimum and/or maximum time from adjacent tracks

• multiple spacecraft per antenna (MSPA): for missions that are close enough in the sky to be in the antenna beam
at the same time (e.g. the missions at Mars), DSN supports multiple downlinks at one time (though only a single
uplink). This is an efficiency that is heavily used in DSN operations and needs to be incorporated in the schedule.

Another area of ongoing work is related to priorities and preferences: requests submitted by users are not all equal to
them, and work has been proceeding on including priorities (such as for critical events like maneuvers, orbit insertions,
planetary landings) as well as user-specified preferences. Both will affect scheduling in that a better schedule will be one
that satisfies higher priority and higher preference requests, while respecting the fairness metrics described above [14].
Implementation of this in DSN operations is underway.

Acknowledgements: This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
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