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Introduction
Necessity of short wavelength infrared (SWIR) detectors — Basic applications

Tesla’s autonomous vehicle system
Using visible camera SWIR image sensor

VISIBLE

=

LEFT REARWARD VEHICLE CAMERA

=

MEDIUM RANGE VEHICLE CAMERA
| N

https://www.tesla.com/autopilot - https://www.sensorsinc.com/gallery/images
Risk of accidents at night and in bad weather Acquisition of invisible information
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Introduction
Advantages for earth observation using SWIR imager

Ecological Processes 10, I, 2021

Pigmenty Leaf Structure , Water and Biochemicals |
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2.5 Science (_“__e__sf Copernicus
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Wavelength, pm |

l
IVisiblel Near-Infrared | Shortwave-infrared

Low-reflectance in 1420 nm wavelength ESA’s earth observation program from 2010 to 2023

"  We believe that the monolithic CQD-based SWIR imager is a promising candidate for a cost-competitive
observation system for earth observation
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Introduction
Radiation effects on near-Earth orbit
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= X-rays have a high ionization energy, which is a suitable to test radiation effects.

* In near-Earth orbit (<500 km), the artificial satellites are exposed to 0.1-1 krad(Si)/year
on low inclination and 1-10 krad(Si) on higher inclinations
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Device structure (TFPD)

Key issues under X-ray irradiation

SiN

ITO
Tio,

PbS-Znl,:MPA

PbS-BDT

Poly-TPD
TiN

Top electrode

Encapsulation layer

Electron transport laye

n-type CQD I;:lyer”<

p-type CQD layer*

Hole transport layer

Inorganic ligands

acid

Benzene- | ,4-dithiol
(BDT)

Bottom electrode

*CQDs are selected for 1420 nm detection
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Issue

* How much is affected under X-ray
(ionizing energy) radiation?
= 220 krad(Si) is enough to understand the
robustness of X-ray radiation in near-
Earth space for 10 yrs.
=  Which layer is a dominant layer in
determining device performance?
= |nterface between ETL and CQD
= |nterface between HTL and CQD

* Interface between n-type and p-type
CQDs
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Hypotheses — Materials(l)

Investigation of influence under X-ray irradiation

ﬂ Hypotheses

\_

X-ray (ionizing energy) j2
@]

PbS-Znl,-MPA ligands

lonizing radiation generates electron from PbS CQDs to
ligands

1. PbS CQD loses the electrons (loss electron)
2. Znl, becomes Znl;
lonizing radiation generates electron from ligands

I. Znl, loses electrons and separates as Znl* and the
oxidized iodide

2. Hydroxyl group in MPA loose electron and
Hydrogen becomes free

~N

J
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Hypotheses — Materials(ll)

Investigation of influence under X-ray irradiation

ﬂ Hypotheses

X-ray (ionizing energy)

\_

PbS-BDT ligands

lonizing radiation generates electron from ligands
I. BDT loses electrons and separates as BDT™

2. And BDT will be delaminated from PbS CQD
layer

J
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Materials characterisation - |

Time-resolved photoluminescence (TRPL)
PbS-Znl,:MPA
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Materials characterisation - |

Time-resolved photoluminescence (TRPL)
PbS-BDT
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= Biexponential treatment to extract the mean carrier lifetime
= Ip(t) = Afasc €xp(—t/Tgast) + Asiow €XP(—t/Tsiow)
" Tmean = [Afast Ttgast/(Afast Trast T Aslow Tslow)] + [Aslow Tszlow/(Afast Trast T Aslow Tslow)]
= qref =1.56ns, 722Krad= 9 39 g, pl10krad= gg g 7220krad= 3 74 ng
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Hypotheses — Materials(l)

Investigation of influence under X-ray irradiation

ﬂ Hypotheses

PbS-Znl,-MPA ligands

PbS-Znl,:MPA has a robustness under X-ray radiation
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J-V measurement
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= According to the increase in X-ray radiation dose (Total ionizing dose, TID),
the leakage current was decreased slightly until | 10 krad, after that was recovered.
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EQE measurement
EQE vs Voltage / EQE vs Wavelength
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= In EQE vs Voltage graph, the initial X-ray dose (22 krad) helped to enhance of onset voltage.
= thereafter, it tends to return to its initial performance.That is, performance decreased.
= In EQE vs Wavelength graph, X-ray radiation seemed to affect the enhancement of EQE performance
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Data physics - |
Dark Charge Extraction by Linearly Increasing Voltage (Dark-CELIV)

Ramp rate: 50 kV/s 4
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Device physics - 2

Capacitance —Voltage measurement
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In p-n junction diode, two types of capacitance
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Future work plan - SWIR image sensor
Experimental plan

Output (DN)
Output (DN)

Before

r ‘:_ s ol
l' lﬂ
T_int:1.25ms T int:1.25ms

Lo o &
(a) (b)

Fig. 11. Comparison of images (a) before and (b) after irradiation under "'9- 12.  Image quality test chart of (a) original image and (b) image
dark conditions taken with QD-CIS. captured using QD-CIS after 220 krad TID.

220 krad

= | suspect how the thin film photodetector can protect Si-ROIC under X-ray radiation?
* We need more investigation of imager under X-ray radiation
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Conclusion



X-ray radiation effects on CQD thin-film photodiode

Summary

= Materials characterization

= we recognized the organic ligands were detortion points under X-ray radiation.
* The degradation of BDT ligands induced the oxidation of CQD surface.
= This red shift phenomenon of PL spectra.

* However, we covered the encapsulation layer in the actual device.Thus, the oxidation may not
happen at the device level.

= Device characterization

* Dark current and EQE are enhanced until TID of 22 krad(Si) and slightly degraded upon the
TID.

= X-ray radiation generates the increased doping concentration in TFPDs

* From the C-V curves, the depletion region has a rigid (reducing trap states) than un-irradiated
samples

* Through the imager demonstration, we prove that this phenomenon is reliable.

“mmec n

confidential



Lihnec

embracing a better life



	Slide 1: X-ray radiation effect on colloidal quantum dot  based short-wavelength infrared photodiode
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Our approaches
	Slide 7: Device structure (TFPD)
	Slide 8: Hypotheses – Materials(I)
	Slide 9: Hypotheses – Materials(II)
	Slide 10: Results - Materials characterization
	Slide 11: Materials characterisation - 1
	Slide 12: Materials characterisation - 1
	Slide 13: Hypotheses – Materials(I)
	Slide 14: Results - Device characterization
	Slide 15: J-V measurement
	Slide 16: EQE measurement
	Slide 17: Data physics - 1 
	Slide 18: Device physics - 2
	Slide 19: Comparing single device to imager
	Slide 20: Future work plan - SWIR image sensor
	Slide 21: Conclusion
	Slide 22: X-ray radiation effects on CQD thin-film photodiode
	Slide 23

