

AI for Decision Making under Uncertainty

Application to Vision-Based Landing,

Aerospace Manufacturing & Earth Observation tasks

Emmanuel Benazera *, Guillaume Infantes,

Antoine Jacquet, Pierre Pereira, Nicolas Meuleau, Louis Jean

04/04/2024

* speaker

Company & Activities

Open Source Software

DeepDetect: Open Source Deep Learning Server joliGAN: Automated data domain adaptation Wheatley: Reinforcement Learning for Planning & Scheduling Parasol: Big Data Visualization LibCMAES: Black-Box Optimization

Datasets

100To+ of ready-to-use datasets (images, texte, cyber, ...) **Pre-trained models** for a range of industries

Compute

50+self-hosted GPUs with ~1Pflop, cloud as supplement Embedded models, hardware and software

Services

ML/DL in Production: Text, Image, Data, Audio, ... Deep Learning Cloud & Appliances Al Consulting

Applications

Content & Media Cyber-Security Transportation High tech & Hardware Medical & Sat Imagery Art, Luxury, ...

R&D

Adversarial & Generative Models Neural Combinatorial Optimization False Positives Minimization Neural Search Engines Small Print Neural Nets Homomorphic Encryption

Personnels

2023: 12 persons (7 seniors, 5 juniors)
Artificial Intelligence: 6 PhDs with > 10 to 20y XP, top track record, AAAI, IJCAI, ECAI, IEEE, JAIR.
Maths/Physics: 1 PhD with 10y XP

Interns: ISAE, Polytechnique, INSA, Dauphine, Paris8, ENSEIIHT, Epitech, TSE, .. Academic & Industrial Pool: NASA, Inria, CNRS, Onera, IRIT, Motorola, Apple, RedHat

Academia & Ecosystem

Collaboration with top-most institutions: ISAE, ONERA, INRIA, CNRS, IRT-SystemX, Confiance.Al, IRT St-Ex International: NeurIPS, ICML, HN, ML Reddit, ... Community: Toulouse&Paris, Open Source, CCC Chart: R&D, no competition, commodifying ML, information sharing, excellence & openness

🚱 🕴 jeliplaiu

Jolibrain Intervention tracks

Critical & Efficient Al Applications

- Critical precision & speed applications
- Defects & rare events detection
- Multi-models AI Applications

Airbus Vision-based Landing (2023)

Airbus painting cracks scanner detection (2023)

Generative AI Industrial Applications

- Dataset smart augmentation
- Generate rare & corner cases
- Augmented reality
- Enhances simulation to real

SNCF sim2real catenary laser-based metrology data (2020)

Airbus DS superresolution (2023)

Autonomous car test set & corner cases generation (2023)

Al for Automatic Decision Making under Uncertainty

- Finds near-optimal robust decision sequences

planned request

r₄ unplanned request

visibility time window

manoeuvr

- Custom schedulers fitted on Airbus/suppliers supply chain, factories, pulse lines...
- Handles uncertainty (time, resources, fail, ...)

Airbus Pulse Line Scheduling (2023)

Airbus Earth Observation Scheduling (2023)

AI for Decision Making under Uncertainty – Airbus Applications

planned request

selected imaging time

request

Most AI Applications Data point(s) → Decision = Detection, Localization, Prediction

1-step Decision Making

 \sim anything a human can achieve in a few seconds gets automated within this category (System 1)

Manufacturing Scheduling & Optimization

- What piece goes on what machine/workstation under resource constraints
- Minimizes makespan / Takt / Costs / Energy / Carbon emission

Earth Observation Scheduling

manoeuvre

 What requests to execute among too many

time window

Maximizes priorities and returns

Gaze-like Object Detection

Navigate an image, optimized compute trade-off

N-steps Decision Making

Humans cannot find good solutions easily \rightarrow cannot be calculated in your head

Team

Dedicated team to yield the best chances of unlocking decision under uncertainty on many tasks.

- Planning & Scheduling senior experts with 20y+ XP ٠
- AI/DL R&D engineers with XP in Neural Combinatorial ٠ **Optimization (NCO)**
- AI/DL developers •

Emmanuel Benazera P&S/DL Researcher with 20y+ XP

Guillaume Infantes RL/P&S/DL Researcher with 20y+ XP.

Antoine Jacquet #2 Coding Games worldwide (!) MuZero expert

Pierre Pereira RL/DL for NCO, generalization. complexity

Application to Compute-Adaptive Object Detection

- Akin to finding a needle in a 4k x 4k+ pixels haystack
- The larger the image, the lower the model size to fit in (GPU) memory
- Model FLOPS increases non-linearly with the size of the image
- Small objects have low accuracy due to image resizing
- Sliding windows consume compute linear to the image size
- Most compute is wasted in areas of no interest
 - e.g. planes \rightarrow mostly sky, boats \rightarrow water, ring \rightarrow finger
- Tracking is separated from detection
 - Requires two steps, with error accumulation

An Alternative Take on Detection in Large Images with Decision Theory

- Human gaze (basically) works in two steps
 - Overview of the full image field
 - Rapid target specialization
 - Gaze 'walk' is **planned** through the image
- Human gaze trajectories are not random
 - Can we plan an object detector to 'walk' through large images ?
- (As a side-note: Pre-DL computer vision rarely worked on the full image at once)

Episode length (auto-regressive)

BBox patches metrics (test) (auto-regressive)

Stop action metrics (auto-regressive)

		Z .
% patches found	97.3%	
MAP	N/A	
Episode length	16.7	
% stop action used	99.1%	

jelipusie

Application to Supply Chain Scheduling

Difficulties for Automating Decision Making under Uncertainty

State of the existing software products & solutions

- Scheduling problem has complexities and exploding time points
 - Huge solution search space!
- Software solvers are "universal" and costly \rightarrow hours to days of compute
 - Compute is exponential the size of the problem → Prevents "solving" large problems
- Solver use custom heuristics that are costly to craft / write by hand (code)
- Solvers don't handle uncertainty
 - Schedule for average uncertainty or worst uncertainty (pessimistic)
 - <u>Consequence</u>: most "work" takes place off-schedule
 - · Hard / too long to re-schedule every time uncertainty drives execution off-schedule
 - Uncertainty builds across the supply chain

jojihrain

Next-generation scheduling problem solver based on GNNs and Reinforcement Learning

No time discretization

Use ML to learn a **robust digital twin** from simulated pulse line or satellite, with uncertainties

Searches for best solutions / schedules with RL while learning the twins under uncertainty

Generalization: learns from small problems, apply to large problems

Consequences

- → Learns a custom solver once (long compute a single time)
- Fits precisely to the factory / satellite at hand
- Executes / Finds schedules in seconds
- → Schedules are robust to uncertainties, e.g. no re-scheduling in most cases

Results on Airbus Pulse Line Scheduling: beating optimal average solution

Airbus supplier, beats optimal average-uncertainty schedule.

Wheatley solves for scheduling problem under both uncertainty and resource constraints

- Beats optimal solution based on average uncertainty
- Scales from suppliers to Airbus-size problems
- Jolibrain initiated and leads a regional project (backed by Occitanie) with Onera and Agilea Group
 - · Airbus has an 'observer' status

Edit »

jojibrain

Results on JSSP

0	T	-			
- ()	в.	· • •	5	\sim	Ιc
0	11-	- L	o	U.	12

Evaluation	W-10×10	L2D	Best PDR	OR-Tools
6×6	521 (7.4)	571 (17.7)	545 (12.4)	485 (0)
10×10	890 (9.6)	993(22.3)	948(16.8)	812 (0)
15×15	1389(17.2)	1501(26.7)	1419(19.8)	1185 (0)
20×15	1583 (16.9)	-	1642(21.3)	1354 (0)
20×20	1959(24.9)	2026 (29.2)	1870(19.3)	1568(0)
30×10	1829(5.5)	-	1878 (8.9)	$1725 \ (0)$
30×15	2043 (14.5)	-	2092(17.3)	$1784 \ (0)$
30×20	2377(22.0)	-	2331 (19.7)	$1948 \ (0)$
50×15	3060 (8.3)	-	3079 (9.0)	2825 (0)
50×20	3322(14.9)	-	3295(14.0)	2891 (0)
60×10	3357(1.7)	-	3376(2.3)	3301 (0)
100×20	5886~(6.9)	-	5786(5.1)	5507 (0)

Table 3: Results on *deterministic* Taillard instances

« Learning to solve Job Shop under Uncertainty » G.Infantes et al. CPAIOR 2024

Evaluation	W-10×10	Wd-10×10	MOPNR	CP-stoc	mode	real
6×6	714(16.3)	817(33.1)	699(13.8)	669 (9.0)	728(18.6)	614(0)
10×10	1217 (21.5)	1464 (46.1)	1252 (25.0)	$1177 \ (17.5)$	1262 (25.9)	1002(0)
15×15	1889~(29.3)	2406 (64.7)	1988 (36.1)	$1872 \ (28.1)$	1925 (31.8)	1461(0)
20×15	$2181 \ (30.5)$	2729~(63.3)	2314 (38.5)	2222 (33.0)	2244 (34.3)	1571 (0)
20×20	2643 (36.4)	3511 (81.2)	2708(40.0)	2631 (35.8)	2619(35.1)	1938~(0)
30 imes 10	2425 (14.1)	3511 (65.2)	2532 (19.1)	2476(16.5)	2598 (22.2)	2126~(0)
30×15	$2792 \ (26.7)$	3251 (47.5)	2964 (34.5)	2892 (31.2)	2943 (33.5)	2204~(0)
30×20	3305 (36.9)	4186(73.3)	3390 (40.4)	3355~(39.0)	3299 (36.6)	2415(0)
50×15	$4043 \ (16.5)$	4413 (27.1)	4262 (22.8)	4239(22.1)	4435 (27.7)	3472(0)
50×20	4520 (26.8)	5351 (50.1)	4679 (31.2)	4682 (31.3)	4758 (33.4)	3566~(0)
60 imes 10	4315 (6.3)	4475~(10.2)	4451 (9.6)	4442 (9.4)	4579(12.8)	4061(0)
100×20	$7591 \ (11.8)$	8377~(23.3)	$7956\ (17.1)$	8203~(20.8)	8188~(20.5)	6793~(0)

Table 4: Results on *stochastic* Taillard instances

Fig. 4: Cumulative makespan of W-10x10 and CP-stoc for 100 duration scenarios.

Application to Earth Obvervation Scheduling

· 🔂 · 🕴 jeliplaiu

EOSP continuous approach

Discrete graph is the internal state of the Environment. Continuous graph is the observation provided to the RL Agent.

Continuous graph nodes are acquisition requests.

Continuous graph nodes attributes contain min/max/mean of corresponding discrete nodes attributes.

A continuous graph edge exists if the is at least one discrete edge for corresponding pair of discrete nodes.

Acquisitions	Discrete Nodes	Continuous Nodes	Ratio	Discrete Edges	Continuous Edges	Ratio
100	10297	100	97	835566	9273	90
300	52020	300	169	12598738	81244	155
500	46589	500	92	14842035	225398	66
800	59583	800	74	28015753	447945	63
1100	94071	1100	88	58343397	741634	79

Results on Earth Observation Scheduling: beating greedy operational solution

Training on 639 medium problems and evaluating on 27 unseen medium problems

STN + learning on single problem

• Training set : generated hundreds of scheduling problems to learn from;

jojibrain

- Wheatley beats operational greedy heuristic easily on medium sized problems (larger problems under study);
- Generalizes to 5x/10x larger problems;
- Wheatley allows solving the problem from its continuous formulation, contrary to the pitfall of most solutions in this space;
- New STN formulation nears best solutions without learning;
- Learning amplifies the gains.

Conclusion

- Jolibrain is an AI A-team
- Dedicated AI Decision making team with 20y XP + pool of external scientists
- Decision under uncertainty is Jolibrain's focus as it generalizes other approaches
- Collaborate with us
 - We're looking for the most challenging problems in decision making
 - Many so-called impossible endeavours can be solved through careful reformulation
 - Visit us, best solutions and formulations emerge from live exchanges

Emmanuel Benazera

emmanuel.benazera@jolibrain.com

+33 6 29 76 47 56

WHEATLEY : an Open Source Product for Next Generation Scheduling

Mix of Jolibrain-copyrighted Open Source Software and custom-developed additions for Airbus applications

Operational score / fixed problem

Training and evaluating on the "eosp_88acqr_53ramp_40greedy_DTCyUhAw" problem Overfits and reaches the Ramp solution

Operational score / generalization / score at each checkpoint

jojibrain

Training on 639 medium problems and evaluating on 27 unseen medium problems

Operational score / generalization / comparison at each checkpoint

Number of test problems where Wheatley is above, equal or below target algorithm

Operational score / inference exploration / pre-training

We trained a model with Wheatley to solve ~100 acquisitions problems in operational mode. During inference, Wheatley uses the argmax of the policy to select the best action. Under the hood, Wheatley uses PPO which has a critic and an actor network head.

We can use these heads to explore during inference using:

- MCTS (like AlphaZero) with 40 sims

- Beam search with a window size of 8 candidates (according to critic) and expanding the 2 best actions (according to actor)

Algorithm	Ramp	Wheatley	Wheatley/Ramp	Time
Wheatley argmax	605894711	605732913	0.9901	~ 7 minutes
Wheatley MCTS(40)	605894711	598283522	0.9888	~ 15 hours
Wheatley Beam(8, 2)	605894711	609511049	0.9983	~ 6 hours

We also tried pre-training the actor head using Ramp solution in supervised learning. This allows Wheatley to start with better solutions, but did improve our best results.