

Quantum Machine Learning

Matthijs van Waveren, Guillaume Pasero Véronique Defonte, Henri Painchart, Clément ForrayPiotr Gawron, Przemysław Głomb, Przemysław Sadowski

cnes

The world is how we shape it*

Agenda

Introduction

Agenda

Introduction

02 Quantum Neural
Network Algorithms

01

Introduction

Machine Learning and Quantum Computing

Quantum Computers

•The computer vendors have an ambitious roadmap

- •D-Wave plans a quantum annealer of 7000 qubits in 2024
- •Rigetti plans a gate-based system of 1000 qubits in 2026 and 4000 qubits in 2027
- •European Commission supports projects to 1000 qubits in 2027

Potential Advantages

 \bullet **Improved Accuracy**

• **Quantum Speedup**

• **Reduced Energy Usage**

Reduced energy usage

Quantum computing basics

 \bullet ^A**qubit** is a quantum system with two levels

```
α |0> + β |1>
```
and we observe $P(|0>|= |\alpha|^2$ and $P(|1>)= |\beta|^2$

- • ^A**quantum circuit** performs an operation on a qubit
- • ⁿ**qubits** encode 2ⁿ states in parallel. This is called **superposition**.
- •2 qubits can be **intricated**.

Quantum Neural Networks

Quantum Convolutional Neural Network

Quantum Layers and Classical Optimization

Data encoding

• Encoding of the images using a cluster state model

Quantum convolution

• Combine adjacent qubits with a convolution circuit

Quantum pooling

• Pool N qubits in N/2 qubits by reducing the intrication with a pooling circuit

Classical optimization

• TensorFlow functions

Scaling of feedforward time

- •**Classical O(N²)**
- •**Quantum O(N)**

11Ref: M. van Waveren et al, Comparison of Quantum Neural Network Algorithms for Earth Observation Data Classification, Proceedings of IGARSS 23, Pasadena, California, 2023.

Other quantum neural network algorithms

• **Quantum Contrastive Learning Algorithm**

Ref: *V. Defonte et al*, Quantum Contrastive Learning for Semantic Segmentation of Remote Sensing Images, Proceedings of Big Data from Space 23, Vienna, 2023.

• **Quantum Long Short Term Memory Algorithm**

Ref: *H. Painchart et al*, Quantum Algorithm for the Analysis of Temporal Sequences of Satellite Images, accepted at IGARRS 24, Athens, 2024.

Orthogonal Neural Network

Neural network algorithm written as linear algebra operations with orthogonal weight matrices

Convert the linear algebra operations into quantum circuits

- Use the Reconfigurable Beam Splitter gate
- Define quantum pyramidal circuit with this gate
- Add data loader circuit

Can be executed either on quantum hardware or on classical hardware.

Scaling of feedforward time

- Classical $O(N^2)$
- •Quantum O(N)

Quantum ConstrastiveLearning

Hybrid Contrastive Learning Framework

Ref: *V. Defonte et al*, Quantum Contrastive Learning for Semantic Segmentation of Remote Sensing Images, Proceedings of Big Data from Space 23, Vienna, 2023.

Parameterized Quantum Circuit

- \bullet 4-qubits version of the circuit from Cong et al
- \bullet Adapted to 8-qubits in this work
- \bullet Can be run on IBM quantum computer

Results

Image

Quantum Long Short TermMemory

Method outline

Ref: H. Painchart et al, Quantum Algorithm for the Analysis of Temporal Sequences of Satellite Images, accepted at IGARRS 24, Athens, 2024.

Model Accuracy Results

Ising Model

Method outline

22

Ref: *B. Gardas et al*, Hyper-spectral image classification using adiabatic quantum computation, Proceedings of IGARSS 23, Pasadena, California, 2023.

Ref: P. Gawron et al, What could be achieved with a Million qubits quantum annealer in Remote Sensing? Accepted at IGARSS 24, Athens, Greece, 2024.

Ising model

- •Ising model is a random Markov field
- •Image is mapped on a grid
- •A local energy is associated with each pixel

•A total energy is associated to the graph

One vs rest:
$$
H(s) = -\sum_i h_i s_i - \beta \sum_{ij} s_i s_j
$$

 $h_i = -$

1

1

 $\frac{1}{P_{i(c)}}$ - 1)

 4 $\frac{1}{4}$ log(

Potts model:
$$
H(s) = -\sum_{i} \sum_{c} h_{i, csi, c} - \beta \sum_{ij} s_{i, c1} s_{j, c2} - \gamma \sum_{i, c} (s_{i, c} + 2)^2
$$

Adiabatic Quantum Computing

•The D-Wave quantum annealer is used to solve the Ising model

 $H(t) = g(t)H_0 + \Delta(t)H_p$

 H_0 : Initial Hamiltonian of the quantum annealer H_p : Hamiltonian corresponding to our problem

- •If we start the computation in the ground state of H_0 , then by varying $g(t)$ and $\Delta(t)$, we end un in the ground state of H_0 for large annealing times end up in the ground state of H_n for large annealing times.
- •The ground state of H_n corresponds to our solution.
- • Potts model results on D-Wave 2000-qubit system
	- Patch size: 8x8 pixels
- •Potts model results on D-Wave 5000-qubit Advantage system in Jülich

24• Patch size: 14x14 pixels

 $\beta = 0.04$

 $\beta = 0.08$

 $\mathsf y$

$\beta = 0.14$

 $\overline{}$ any

ıу

 $β=0.05$
Acc classic = 0.6242 - Acc quantum = 0.7536

 $\beta = 0.1$
Acc classic = 0.6242 - Acc quantum = 0.9201

Ground truth with simulated noise

 $\beta = 0.2$
Acc classic = 0.6242 - Acc quantum = 0.9861

 $β=0.3$
Acc classic = 0.6242 - Acc quantum = 0.9928

 β =0.4
Acc classic = 0.6242 - Acc quantum = 0.9856

Quantum improvement

 $\beta = 0.025$
Acc classic = 0.9376 - Acc quantum = 0.9639

 $β=0.05$
Acc classic = 0.9376 - Acc quantum = 0.9861

a Sopra Steria company

 $\beta = 0.1$
Acc classic = 0.9376 - Acc quantum = 0.9974

 β =0.2
Acc classic = 0.9376 - Acc quantum = 0.9985

 β =0.3
Acc classic = 0.9376 - Acc quantum = 0.9964

Pre-processing with Random Forest

39

a Sopra Steria company

Quantum Improvement

 $β=0.025$
Acc classic = 0.9052 - Acc quantum = 0.9232

SVMpre-processor

 $\beta = 0.05$
Acc classic = 0.9052 - Acc quantum = 0.9443

a Sopra Steria company

SVMpre-processor

 $\overline{\mathbf{v}}$

 $\beta = 0.1$
Acc classic = 0.9052 - Acc quantum = 0.9644

SVMpre-processor

 $\overline{\mathbf{x}}$

 $β=0.2$
Acc classic = 0.9052 - Acc quantum = 0.9778

SVMpre-processor

 $\beta = 0.3$
Acc classic = 0.9052 - Acc quantum = 0.9722

SVMpre-processor

Quantum Improvement

Pre-processing with SVM

β

Conclusion

Current state of the art

- We see improvements in the classification and segmentation accuracies
- \bullet Quantum speedup is possible if the quantum computers become more powerful
- \bullet Reduced energy usage will come with quantum speedup
- \bullet Quantum annealers claim to be production-ready
- \bullet Gate-based quantum computers are not yet production-ready

Thank you for your interest!

