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Machine Learning and Quantum Computing
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• The computer vendors have an ambitious roadmap

• D-Wave plans a quantum annealer of 7000 qubits in 2024

• Rigetti plans a gate-based system of 1000 qubits in 2026 and 4000 qubits in 2027

• European Commission supports projects to 1000 qubits in 2027

Quantum Computers
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• Improved Accuracy• Improved Accuracy

Potential Advantages

• Quantum Speedup• Quantum Speedup

• Reduced Energy Usage• Reduced Energy Usage
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Reduced energy usage
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Quantum computing basics

• A qubit is a quantum system with two levels

α |0> + β |1> 

and we observe    P(|0>)  = |α|2 and P(|1>) = |β|2

• A quantum circuit performs an operation
on a qubit

• n qubits encode 2n states in parallel. 
This is called superposition.

• 2 qubits can be intricated.
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Quantum Neural 
Networks



11

Quantum Convolutional Neural Network
Quantum Layers and Classical Optimization

Data encoding

• Encoding of the images using a cluster state model

Quantum convolution

• Combine adjacent qubits with a convolution circuit

Quantum pooling

• Pool N qubits in N/2 qubits by reducing the intrication with a pooling circuit

Classical optimization

• TensorFlow functions

Ref: M. van Waveren et al, Comparison of Quantum Neural Network Algorithms for Earth
Observation Data Classification, Proceedings of IGARSS 23, Pasadena, California, 2023.

Scaling of feedforward time

• Classical O(N2)

• Quantum O(N)
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• Quantum Contrastive Learning Algorithm

• Quantum Long Short Term Memory Algorithm

Other quantum neural network algorithms

Ref: V. Defonte et al, Quantum Contrastive Learning for Semantic Segmentation of Remote
Sensing Images, Proceedings of Big Data from Space 23, Vienna, 2023.

Ref: H. Painchart et al, Quantum Algorithm for the Analysis of Temporal Sequences of Satellite 
Images, accepted at IGARRS 24, Athens, 2024.
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Neural network algorithm written as linear algebra operations with
orthogonal weight matrices

Convert the linear algebra operations into quantum circuits

• Use the Reconfigurable Beam Splitter gate

• Define quantum pyramidal circuit with this gate

• Add data loader circuit

Can be executed either on quantum hardware or on classical hardware.

Orthogonal Neural Network

Scaling of feedforward time

• Classical O(N2)

• Quantum O(N)

Ref: I. Kerinidis, J. Landman, N. Mathur, Classical and Quantum Algorithms for 
Orthogonal Neural Networks, https://arxiv.org/pdf/2106.07198
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Quantum 
Constrastive
Learning
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Hybrid Contrastive Learning Framework

Ref: V. Defonte et al, Quantum Contrastive Learning for Semantic Segmentation of Remote
Sensing Images, Proceedings of Big Data from Space 23, Vienna, 2023.
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• 4-qubits version of the circuit from Cong et al

• Adapted to 8-qubits in this work

• Can be run on IBM quantum computer

Parameterized Quantum Circuit
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Results

RGB 
Image

PCA CNN Hybrid
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Short Term
Memory
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Method outline

Ref: H. Painchart et al, Quantum Algorithm for the Analysis of Temporal Sequences of Satellite 
Images, accepted at IGARRS 24, Athens, 2024.
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Model Accuracy Results

Phase No iterations Average
Accuracy

Accuracy
Stable Forest

Accuracy
Deforestation

QCNN 
Ascending

20 76.5 % 87 % 67.3 %

QCNN 
Descending

20 75.2 % 79 % 71.6 %

QLSTM 100 76.5 % 52.9 % 100 %

Full Model 21 75 % 96.2 % 56.2 %

Final Model 11 81.3 % 85.7 % 75.7 %
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Ising Model
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Method outline

Indian Pines

Binary SVM for 
each class

Ising model on 
quantum 
annealer

training Pixelwise
per-class

probability
maps

Predicted
labels

Training 
labels

Spectral 
information

Spatial 
information

Ref: B. Gardas et al, Hyper-spectral image classification using adiabatic quantum computation, 
Proceedings of IGARSS 23, Pasadena, California, 2023.

Ref: P. Gawron et al, What could be achieved with a Million qubits quantum annealer in 
Remote Sensing? Accepted at IGARSS 24, Athens, Greece, 2024.
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• Ising model is a random Markov field

• Image is mapped on a grid

• A local energy is associated with each pixel
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Adiabatic Quantum Computing
• The D-Wave quantum annealer is used to solve the Ising model

� � � � � �0 �  Δ � �! 

�0 : Initial Hamiltonian of the quantum annealer

�! : Hamiltonian corresponding to our problem

• If we start the computation in the ground state of �0, then by varying �
�� and Δ � , we will
end up in the ground state of �! 

for large annealing times.

• The ground state of �! 
corresponds to our solution. 

• Potts model results on D-Wave 2000-qubit system

• Patch size: 8x8 pixels

• Potts model results on D-Wave 5000-qubit Advantage system in Jülich

• Patch size: 14x14 pixels
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Ground truth with

simulated noise
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Ground truth with

simulated noise
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Ground truth with

simulated noise
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Ground truth with

simulated noise
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Ground truth with

simulated noise
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Quantum improvement
Ground truth with simulated noise
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Pre-processing with

Random Forest
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Pre-processing with
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Pre-processing with

Random Forest
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Pre-processing with

Random Forest
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Pre-processing with

Random Forest
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β

Quantum Improvement
Pre-processing with Random Forest
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SVM

pre-processor
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SVM

pre-processor
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SVM

pre-processor
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SVM

pre-processor
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SVM

pre-processor
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β

Quantum Improvement
Pre-processing with SVM
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Conclusion
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• We see improvements in the classification and segmentation accuracies

• Quantum speedup is possible if the quantum computers become more powerful

• Reduced energy usage will come with quantum speedup

• Quantum annealers claim to be production-ready

• Gate-based quantum computers are not yet production-ready

Current state of the art
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